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1.  INTRODUCTION 

The ability to compute the base region flow field for projectile configurations using Navier-Stokes 

computational techniques has been of active interest within the Aerodynamics Branch of the Propulsion 

and Flight Division, U.S. Army Research Laboratory, for the past decade. These techniques are most 

important for determining aerodynamic coefficient data which depend on the coupled viscous and inviscid 

interacting flow fields. Particular emphasis has been placed on predictions of the total aerodynamic drag. 

The total drag as described in this report consists of the pressure drag (excluding the base), viscous drag, 

and base drag components. At transonic and low supersonic speeds, the base drag component is the major 

contributor to the total aerodynamic drag. 

Since aerodynamic drag has the greatest impact on the eventual range of an artillery shell, any 

reduction in drag can have a large payoff in increased range. An effective means for reducing drag is 

through the addition of mass in the low-speed, recirculating, low-pressure region directly behind the 

projectile base. This technique is known as "base bleed" and has been the subject of experimental (Baker, 

Davis, and Matthews 1951; Murthy et al. 1976; Murthy and Osborn 1976; Strahle, Hubbartt, and Walterick 

1982) and computational studies (Sahu, Nietubicz, and Steger 1985; Sahu 1986). When the gas is 

combustible, an additional drag reduction is obtained due to the wake burning which occurs. The latter 

technique is termed "base burn" and was initially described by Baker, Davis, and Matthews (1951). 

The application of advanced numerical techniques to base bleed projectile configurations was first 

begun by Sahu (1986). In the initial work, the projectile base was considered to be flat, and cold mass 

injection was modeled. As interest extended to the M864 projectile, the effect of a domed base 

configuration as well as the injection of hot mass injection was studied by Nietubicz and Sahu (1988). 

The results of this work, coupled with experimental ground-based tests, led to the development of an 

engineering model by Danberg (1990) for the prediction of flight performance of the M864 as well as 

other base bleed projectiles (Danberg 1991). The next effort was to provide a combustion capability 

which was developed by Gibeling and Buggeln (1991), where they extended the Scientific Research 

Associates, Inc. (SRA) MINT and CMINT codes to a flat base projectile and investigated various 

combustion models. 

The M864 is a 155-mm, extended range, cargo-carrying projectile shown in Figure 1. It has a 

boattailed base section which includes a domed cavity and a combustion chamber for the solid propellant. 

1 



GAS GENERATOR J 
Figure 1. Schematic of M864 base bleed projectile. 

The details of this can be seen in the expanded view of the base section shown in Figure 2. Note that the 

hole in the base is an orifice and not a nozzle design. This is in keeping with the low-speed bleed design 

as opposed to a rocket-assisted projectile. The shape of the M864 is similar to that of the 

product-improved M825, which also contains a base cavity (D'Amico 1987). Very limited detailed data 

exists for the M864, and the effects of both the dome base and the addition of base bum are not well 

understood. 

The majority of base flow calculations had generally modeled the base region as a flat solid surface. 

Many of the actual configurations have some form of base cavity. General opinion had been that the 

inclusion of a base cavity or modifications to the interior cavity of a projectile base would have little or 

no effect on the overall flight performance parameters. Both experimental firings (D'Amico 1987) and 

computations of the M825 (Sahu and Nietubicz 1989) have shown that this is not the case. Both changes 

in drag of 2% and changes in lift of approximately 7% have been found. 

The Navier-Stokes computational study described here extends the application to include the effect 

of base burn on the M864 projectile configuration. SRA's Navier-Stokes code, CMINT, has been used 
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Figure 2. M864 base burn motor. 

with an H2-CO combustion model to compute the base region flow field. Numerical computations have 

been completed at a = 0.0° for a Mach number range of 0.8 < M < 3.0. A reduction in drag was found 

first for hot gas injection, with a further reduction in drag due to the wake combustion. Qualitative 

features of the computed flow fields are presented in the form of temperature contours, species mass 

fraction contours, and velocity vectors. 

2.  GOVERNING EQUATIONS AND SOLUTION TECHNIQUE 

2.1 Governing Equations. The complete set of time-dependent, ensemble-averaged Navier-Stokes 

equations with fully coupled species conservation equations is used for the solution of the projectile base 

bum problem. The numerical technique used is an implicit finite difference scheme. Although the 

solution of the time-dependent equations is being made, the transient flow is not of interest, and the 

equations are solved in a time-asymptotic manner. 

The governing partial differential equations are written in a strong conservation form using a 

nonorthogonal, body-fitted, cylindrical coordinate system. Details of the transformation for the full set 



of equations are described by Sabnis, Gibeling, and McDonald (1989). The equations presented here are 

expressed in vector form. 

The continuity equation is written as 

li + V • (pU) = 0. 
at K (1) 

The momentum conservation equation is 

a(pu) + V • (pUU) = -Vp + V -T, 

where x is the stress tensor (molecular and turbulent) given by 

(2) 

*ij - 2Peff eij" ?Peff v 'U8ij' (3) 

and the rate of strain tensor, e^, is given by 

eU=2 
dU: dU: 

■3— + T-1 
dX: dX: 

(4) 

The effective viscosity, peff, is the sum of the molecular and turbulent viscosities 

Peff = M + PT- (5) 

The turbulent viscosity, uT, is obtained from the turbulence model. The turbulence models used for the 

present study are algebraic and will be discussed at a later time. The energy conservation equation is 

written in terms of the stagnation enthalpy, h0, as 

^l + V.(PUh0) = |E-V.q + V.(T.U), (6) 

where the last term in Equation 6 is the stress work and q is the heat flux vector, 



q = -Keff VT + qd (7) 

where Keff is the effective thermal conductivity and qd is the interdiffusional energy flux. In the present 

analysis, Keff is obtained assuming constant molecular and turbulent Prandtl numbers, Pr and PrT; i.e., 

PS      pTc 
K-ff = —i- +  v- . (8) eft       Pr        PrT 

The interdiffusional energy flux is given by 

Ns 

qd=   E  hi(T)Ji, (9) 
i = l 

where yx is defined in Equation 12 and hj(T), the enthalpy of species i per unit mass, is 

hi(T) = hfi+ Jcpi(T')dT'. (10) 

The species conservation equations are expressed as 

^lil + V-(pUYi)«-V-ji + wi, (ID 

where Y{ is the mass fraction of species i, w{ is the rate of production of species i due to chemical 

reaction, and jj is the diffusional mass flux of species i. Assuming that the diffusion of mass is governed 

by Fick's law, jj is given by 

Ji-.pDV.Yi (12) 



where D is the diffusion coefficient which is obtained by assuming constant molecular and turbulent 

Schmidt numbers, Sc and ScT; i.e., 

pD = _L + _ÜL. (13) 

Finally, for a mixture of perfect gases, the equation of state is 

p = pRT 

Ns    Y. O4) 
R = Ru   E   —' 

Ui = l  Wi 

where Ru is the universal gas constant, Wj is the molecular weight of species i, and Ns is the total 

number of species in the system.  The caloric equation of state relates the temperature and the static 

enthalpy as 

Ns 
h =   E  YihiCT). (15) 

i = l 

This relation is evaluated using the JANNAF database of polynomial curve fit coefficients for Cpi and h{ 

as functions of T, which are available from NASA Lewis Research Center (Gordon and McBride 1976). 

2.2 Turbulence Model. The application of the Baldwin-Lomax algebraic turbulence model to 

projectile forebody flows has provided excellent results for even the most viscous dominated aerodynamic 

coefficient such as Magnus force (Sturek and Nietubicz 1992). It has further been applied to wake flows 

(Sahu, Nietubicz, and Steger 1985; Sahu 1986) and provided reasonable results for the integrated total 

drag. However, more recent results with a k-e turbulence model (Sahu 1992) show that when a 

comparison of base pressure is made with available experimental data, an improved agreement is found 

over the algebraic model. 

The study presented here has used the Baldwin Lomax model for the projectile forebody and a wake 

mixing model of Chow (1985) for the wake and free shear layer flow behind the projectile base.  No 



detailed base pressure data is available for the M864, with or without base burn, and a detailed study of 

turbulence models was not considered at this time. The integrated total drag will be used to determine 

overall accuracy. 

2.3 Chemistry Model. The propellant grain for the M864 is molded in the form of a donut shape to 

fit within the projectile afterbody. The propellant is split in two, separated by a 3-mm-wide gap. The 

propellant grain burns both within the inner cylindrical surface and the slot. Details of the propellant 

formulation were obtained from the manufacturer (Brody 1991). There has been no detailed analysis 

performed for this combustion process. The NASA Lewis CET86 code (Gordon and McBride 1976) was 

run and provided combustion products that consisted primarily of Hj, CO, HC1, C02, H20, and N2. The 

mole fractions of these constituents in chemical equilibrium sum to 0.997; hence, there is little error in 

ignoring the remaining trace species. An equivalent mixture was formulated by Gibeling and Buggeln 

(1991) to eliminate the HC1 where both the heat of combustion and the molecular weight have been 

matched to those of the original equilibrium combustion products. The composition of the equivalent 

mixture is given in Table 1. 

The reaction rates for the models considered herein are expressed in the Arrhenius form; i.e. 

kf = A Tb exp 

( \ 

^    RT 

and the backward rate coefficients, kb, are obtained using the equilibrium constant Kc, where 

kf Kc = _£ . C     kb 

The equilibrium constant is calculated using the Gibbs free energy as described by Vincenti and Kruger 

(1965). What remains to be specified for the reaction rates to be complete is the temperature. Although 

the equilibrium temperature can be calculated, assuming the combustion products are in chemical 

equilibrium, it was specified from data obtained during ground-based (Kayser, Kuzan, and Vazquez 1988) 

and flight tests (Kayser, Kuzan, and Vazquez 1990) of the M864 projectile. Thermocouples were placed 

within the combustion chamber, and temperature measurements were taken in a ground fixture where the 

base was spun and data was taken as a function of spin rate.   The ground test indicated an average 



Table 1. M864 Propellant Equilibrium Species Concentrations 
(Major Species, T = 1,533 K, p = 0.68 atm) 

Species i 

CET86 Results Equivalent Mixture 

Mole 
Fraction 

Mw. Mole 
Fraction 

Mass 
Fraction 

CO 0.249 28.01 0.265 0.3402 

co2 0.069 44.01 0.160 0.3228 

HC1 0.136 36.46 0.0 0.0 

H2 
0.261 2.016 0.261 0.0241 

H20 0.197 18.015 0.197 0.1627 

N2 0.085 28.01 0.117 0.1502 

Sum 0.997 
(Mw) 
21.81 1.000 1.000 

chamber temperature of approximately 1,200 K. Similar measurements were obtained from actual flight 

tests, and data were obtained as a function of range. The temperature measurements from the flight tests 

indicated an average chamber temperature of approximately 1,500 K. The flight tests are considered to 

be the more accurate of the two. Therefore, the temperature for the injected gas was assumed to be at 

1,533 K. 

A series of combustion models for the base burn problem as evaluated by Gibeling and Buggeln 

(1991). They began by looking at a set contain 23 reactions where the relative importance of each 

reaction was numerically studied. The final set of 12 modified model reactions determined to adequately 

model the solid propellant combustion is shown in Table 2 along with the Arrhenius constants for the 

forward reactions. The backward rates are obtained from kf and Kc. 

2.4 Boundary Conditions. The outer computational boundary was set at approximately two body 

lengths from the projectile surface. Free-stream conditions were then imposed along the outer boundary. 

Viscous boundary conditions of no slip were used at the wall and projectile base. The normal momentum 

equation is solved at the wall using a zero normal pressure gradient and zero gradient for species mass 

fractions. The free-flight wall temperature is specified at Tw = 294 K, and using the time-lagged pressure, 



Table 2. Carbon Monoxide Oxidation Mechanism (Gibeling and Buggeln 1991) With Rate Constant: 
kf = ATbexp(-Ea/RT)a 

- Reaction A b Ea 
(kJ/mole) 

1.       H         + 02                  ** OH      + 0 1.2 x 1017 -0.91 69.1 
• 2. H2       + 0                    -* OH      + H 

3. 0         + H20                "OH      + OH 
1.5 x 107 2.00 31.6 
1.5 x 1010 1.14 72.2 

4.       OH      + H2                   " H20     + H 1.0 x 108 1.60 13.8 
5.       0         +H          + M    " OH      +M 1.0 x 1016 0.00 0.0 
6.       0         +0          + M    " 02        +M 1.0 x 1017 -1.00 0.0 
7.        H         +H          + M    " H2        +M 9.7 x 1016 -0.60 0.0 
8.       H20     +M                    " H         +OH+M 1.6 x 1017 0.00 478.0 
9.        02        + H2                    " OH       +  OH 7.94 x 1014 0.00 187.0 
10.     CO      + OH                  " C02     + H 4.4 x 106 1.50 -3.1 
11.     CO      +0          +M    ** C02     + M 5.3 x 1013 0.00 -19.0 
12.     CO      + 02                   " C02     +  0 2.5 x 1012 0.00 200.0 

a Dimensions of kf are [cm3 / mole]m ' sec * where m is the reaction order; T is in Kelvin.  Reverse rate 
constants kj, are obtained from kj and the equilibrium constant Kc. 

the density at the wall is determined. The base bleed boundary conditions require a specification of the 

mass injection rate I, where 

PooU^Ajjggg 

and nij is the injection mass flow rate. With the mass injection specified, the Mach number at the base 

bleed hole can be determined from 

r 

Mi =           < T„: P«,Ah 
2 (19) 

i   Y - 1 -1  + 1 + 2(Y - 1)-S IMM  ~   b 

> 
Too .    ^PJAJJ 

where subscripts b and j refer to conditions at the bleed orifice. The computed pressure and flow field 

variables from the previous time step are used.   With the bleed gas stagnation pressure and static 

9 



temperature then determined from isentropic relations, the density for the bleed conditions is obtained. 

This formulation was first developed and applied by Danberg and Nietubicz (1992). All cases presented 

here have used an injection parameter, I = 0.0022, which is somewhat lower than the average value. Data 

deduced from flight tests of the M864 (Lieske and Danberg 1992) indicate an average mass injection value 

of I = 0.006. The stagnation temperature of the injected gas was 1,533 K. At the downstream boundary, 

an outflow condition of first derivative extrapolation was used. 

2.5 Solution Technique. The set of equations described earlier was solved using a linearized block 

implicit (LBI) algorithm and an ADI approximate factorization technique as developed by Briley and 

McDonald (1977). Centered spatial differencing is used, and suppression of high-frequency oscillations 

due to severe flow field gradients is achieved using an adjustable artificial dissipation. Steady state results 

are achieved by advancing the solution in time. A spatially varying time step was used to accelerate 

convergence to a steady solution. The solution of the reacting set of equations required further time 

conditioning, which was achieved by using a time step scaling based on the chemical production source 

terms in the species equations (Eklund, Drummond, and Hassan 1990). A more complete description of 

the solution technique is given by and representative applications may be found in Briley et al. (1991). 

The code used for the results presented here is a reacting flow version of CMINT. This code was 

extended, under contract, to include the base boundary conditions described earlier and then applied to 

a flat base projectile. The analysis and theory are described in Gibeling and Buggeln (1992a). A user's 

guide for this code, CMINT Version 5.04-BRL (Gibeling and Buggeln 1992b), has also been developed. 

2.6 Computational Grid. As with most all artillery shells, the M864 has a groove in the nose fuze 

and has a rotating band. The computational model used is shown in Figure 3 and does not include these 

details. The flat nose and fuze ogive, however, have been modeled. The general shape of the internal 

base cavity is shown as a dotted line on the boattail section. The base burn motor is located internally 

with the exhaust port centered on the model axis. The initial body point distribution was provided using 

an interactive design program. Each grid section (projectile body and base) was then obtained using a 

hyperbolic grid generation program (Nietubicz, Heavey, and Steger 1982). Due to the extreme concavity 

of the M864 base section, both smoothing and grid cell averaging were required to eliminate grid line 

crossing. Details of the smoothing procedure as well as a description of an interactive version of the 

hyperbolic grid generator can be found in Ferry and Nietubicz (1992). 

10 
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Figure 3. M864 computational model. 
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Figure 4. Computational grid near projectile surface. 
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Figure 4 shows the computational grid generated in the vicinity of the projectile body. It consists of 

145 longitudinal points up to the base corner and 90 points in the normal direction. The near-wall grid 

resolution in the transverse direction (i.e., Vr/D) was 2 x 10~5 to provide sublayer resolution. Although 

this spacing provided a few points within the viscous sublayer, subsequent results have shown that a 

near-wall resolution of (Vr/D) 5 x 10~5 is required for more accurate viscous results. 

Figure 5 shows the base region grid. This grid section contains 90 points radially from the centerline 

to the base corner, and 90 points from the corner to the outer boundary. There are 20 points in the 

injection region, which extends from the centerline to a radius of 0.15 caliber. From the base comer to 

the downstream outflow boundary, there are 150 points. The large number of points in the base region 

and the concentration in the near-wake region were required for the reacting flow cases. 

2.7 Results. The primary goals of this research effort were to apply the CMINT code to the M864 

projectile for a series of Mach numbers, determine the effect of combustion in the wake region, and 

compare the results with the available experimental data. To achieve these goals, computations were 

performed for a Mach number range of 0.8 < M < 3.0, a = 0.0°. All cases were run for atmospheric 

conditions with T   = 294 K.   The bleed gas temperature, T, was based on experimental flight data 
00 J 

(Stahle, Hubbartt, and Walterick 1982) and set to Tj = 1,533 K.   As discussed previously, the mass 

injection, I, was set to 0.0022. 

The computations were performed by running a full projectile case with no base burn (inert). After 

convergence, a starting profile was selected on the boattail, approximately 1/2 caliber from the base. This 

data was used for subsequent base combustion runs. Each case ran approximately 2,000 steps until a 

converged solution was obtained. The data are presented in the form of Mach contours, temperature 

contours, and species mass fraction contours. Also, the drag force coefficient has been determined and 

compared with results obtained from a trajectory simulation program. 

Temperature contours are initially compared for a case with hot gas injection (see Figure 6) and 

H2-CO combustion (Figure 7). Hot air injection has a significant effect on the size and shape of the 

recirculation zone. This was shown by Nietubicz and Sahu (1986) where injection of air at 1,200 K was 

shown to move the recirculation zone downstream approximately 1/2 caliber. With the addition of burning 

in the wake, the additional temperature increase can be seen in Figure 7 to extend further into the 

12 
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recirculation zone than for the hot gas case (Figure 6). Additionally, the high temperature is seen to exist 

in the concave portion of the M864 base, very near the base corner. This increase in the recirculation 

zone causes the expansion at the base corner to weaken even further than the hot gas case and thus raise 

the base pressure, causing the drag to decrease. Temperature contours are shown in Figure 8 for 

Mach = 3.0. The base corner region is shown to be at an elevated temperature with the effect extending 

well in to the near-wake region. This increased temperature results from the combustion of H2-CO in the 

wake. A comparison of the temperature contours for the M = 1.5 and M = 3.0 is shown in Figure 9. The 

increased temperature is again distributed within the near-wake region, however the M = 1.5 shows 

generally lower values overall. 

Additional evidence of base burning can be seen from the species mass fraction contours shown in 

Figure 10 for CO. Both CO and H2 are the primary species which control the combustion process in the 

wake. The contours show a strong mass fraction level of CO very near the bleed hole and extending up 

to the base corner. These high, fuel-rich concentration areas give rise to active combustion zones, which 

was indicated by the elevated temperature in those regions. Figure 11 compares the CO mass fraction for 

the Mach 1.5 and 3.0 case. Here the distribution in the wake is about the same for both cases, with the 

M = 1.5 showing the higher mass fraction level more near the bleed hole. 

Mach contours are presented in Figure 12 for M^ = 3.0 and indicate the low-speed wake flow and 

size of the recirculation region. The stand-off distance of the recirculation region decreases as the 

free-stream Mach number increases. This can be seen in the comparison plot of Figure 13 where Mach 

contours for both the MM= 1.5 and M^ = 3.0 case are shown. However, the effect of the increased 

temperature due to combustion minimizes this decrease. The effect on the base pressure is directly related 

to this change. The injection of gas into the base region and subsequent burning will move the 

recirculation downstream. This process will result in a downstream shift in the wake closure location and 

a reduced expansion at the base corner, which implies an increase in base pressure. 

The base pressure is shown in Figure 14 as a function of radial position for all the Mach numbers 

computed. The base pressure is seen to be constant from the edge of the bleed orifice (r/D = 0.14) to the 

base corner. Across the bleed orifice, the pressure is seen to increase. Currently there is no base pressure 

data available for the M864 with base burn.    Recent comparisons of computed base pressure by 
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Figure 9.  (U) Comparison of temperature contours, M = 1.5 (bottom) and M = 3.0 (top). 

CONTOUR LEUEL 
0,ÖD000 

D! 30000 
Q 32000 
ui 34000 
U 30000 
n 33000 

Figure 10.  Species mass fraction contours for CO, M = 3.0. 
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Figure 11.  Comparison of species mass fraction for CO, M = 1.5 (bottom) and M = 3.0 (top). 
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Sahu (1992) with data from the University of Illinois for a nonbleed case show a constant base pressure 

for the supersonic condition tested. 

Given the lack of detailed experimental data for the M864, comparisons have been made for the zero 

yaw drag values, which can be obtained from the computations and from experimental flight tests. Lieske 

and Danberg (1992) have modified a point mass trajectory model for rocket-assisted projectiles to include 

the effect of base burn. The modification models the change in base drag due to changes in the base 

pressure caused by the hot gas injection. The model is adjusted with a drag reduction factor and constants 

determined from actual flight tests of the M864. Since the model has been adjusted by flight tests data 

and the computations have been performed for the same configuration, a comparison of the zero yaw drag 

under base burn conditions can be made. The model was run for the same conditions as those computed 

(i.e., atmospheric pressure and temperature, I = 0.0022 and T = 1,533 K). 

A plot of the total drag force coefficient obtained from the trajectory model (Lieske and Danberg 

1992; Lieske 1992) is shown in Figure 15. The model predictions for both an inert and base bum case 

are shown by the solid and dashed lines, respectively. The results from the Navier-Stokes computation 

with combustion are shown in the solid symbols. Also shown as a dotted line with open squares are the 

results from Danberg's engineering model (Danberg and Nietubicz 1992), which was run for the same 

conditions as the computations. This model combines the solid motor burn performance, the effect of hot 

mass injection on drag, and a trajectory model. The comparison is shown to be in some agreement at the 

higher Mach numbers, but falls off at the lower values. This is especially true at the subsonic condition 

of Mach 0.8. The underprediction of the total drag for the subsonic case has also been found without base 

burn or base bleed. Work in the areas of turbulence modeling, different algorithms, and adaptive gridding 

are being used to help resolve this problem area. The inert results have in the past been generally good 

for supersonic conditions, and a sample result is shown as a solid triangle in Figure 13. The agreement 

with the trajectory model predictions is shown to be very good. 

Additional work needs to be accomplished for the base bleed/base burn configurations both on an 

experimental and computational basis. Detailed pressure measurements on the base of the M864 would 

be valuable, as well a better description of the fuel-rich exhaust of the M864 base burn motor. 
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3.   SUMMARY 

Computations were performed for the M864 base burn projectile across a Mach number range of 

0.8 < M < 3.0. A modified version of the SRA CMINT code was used with a combustion model 

containing 6 species and 13 reactions. The results have shown an increased temperature in the near-wake 

region of all cases and a decrease in the base drag over the hot injection case. The computed results were 

compared to a trajectory simulation based on the flight performance of a large number of M864 rounds. 

The comparison was fair at the higher Mach number, but falls off substantially in the subsonic region. 

Base pressure data is limited in the subsonic region for projectiles both with and without base bleed/base 

bum. This type of data would be valuable in accessing the reasons for the underprediction of base drag 

in subsonic flow. 
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